K-shell excitation of hydrogen-like and helium-like uranium in relativistic collisions

A Gumberidze¹, D B Thorn², A Surzhykov^{3,4}, C J Fontes⁵, B Najjari⁶, A Voitkiv⁷, S Fritzsche^{8,9}, H L Zhang⁵, D Banaś¹⁰, H F Beyer¹, W Chen¹¹, R D DuBois¹², S Geyer^{1,13}, R E Grisenti^{1,13}, S Hagmann^{1,13}, M Hegewald^{1,13}, R Hess¹, S Hess¹, P M Hillenbrand¹, P Indelicato¹⁴, C Kozhuharov¹, R Märtin^{1,8}, I Orban¹⁵, N Petridis¹, R Schuch¹⁵, A Simon¹⁶, U Spillmann¹, M Trassinelli¹⁷, S Trotsenko¹, A Warczak¹⁸, G Weber^{1,8}, W Wen⁶, D F A Winters¹, N Winters¹, Z Yin¹⁹, D Yu⁶ and T Stöhlker^{1,8,9}

 ¹GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany; ²Lawrence Livermore National Laboratory, California USA; ³Physikalisch-Technische Bundesanstalt, Braunschweig, Germany; ⁴Technische Universität Braunschweig, Germany; ⁵Los Alamos National Laboratory, New Mexico, USA; ⁶Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China; ⁷Heinrich-Heine-University of Düsseldorf, Germany; ⁸Helmholtz-Institut Jena, Germany; ⁹Friedrich-Schiller-Universität Jena, Germany; ¹⁰Jan Kochanowski University, Kielce, Poland; ¹¹CSNS, CAS, IHEP, Dongguan, China; ¹²Missouri University of Science and Technology, Rolla, Missouri, USA;
¹³Universität Frankfurt am Main, Germany; ¹⁴LKB, Sorbonne Université, CNRS, ENS-PSL Research University, Collège de France, Paris, France; ¹⁵Stockholm University, Sweden; ¹⁶MSU, East Lansing, MI, USA; ¹⁷INSP, CNRS, Sorbonne Université, Paris, France; ¹⁸Jagiellonian University, Krakow, Poland; ¹⁹ETH Zürich, Switzerland;

Synopsis In this contribution, we present an experimental and theoretical study of the proton- and electron-impact excitation processes in relativistic collisions of hydrogen- and helium-like uranium ions with gaseous targets. State-of-the-art calculations which treat both processes within the relativistic framework, provide a good agreement with the experimental data. Moreover, our experimental results clearly demonstrate the importance of including the generalized Breit interaction in the electron-impact excitation calculations.

We have studied the K-shell excitation of Hand He-like uranium (U^{91+} and U^{90+}) in relativistic collisions with gaseous targets by observing the x-rays emitting during the subsequent de-excitation process. The experiments were conducted at the ESR storage ring of the GSI accelerator facility in Darmstadt, Germany. The measurements were performed with a recently developed multi-phase target at different collision energies. This enabled us to explore the proton- (nucleus-) impact excitation (PIE) as well as the electron-impact excitation (EIE) processes in the relativistic collisions. Up to now, most of the experimental studies of the EIE process, which playes a prominent role in various types of laboratory and astrophysical plasmas, have been performed with the electron beam ion trap (EBIT) devices limited, to the mid-Z regime [1,2]. In this work, we have extended the EIE studies to the heaviest H- and He-like ions (U^{91+} and U^{90+}). The large finestructure splitting in uranium allowed us to unambiguously resolve excitation to different finestructure levels of the L-shell. Moreover, information about the population of different magnetic sublevels has been obtained via an angular differential study of the decay photons. The experimental results are compared with state-ofthe-art relativistic calculations including excitation mechanisms due to both protons (nucleus) and electrons, providing a good agreement and emphasizing the importance of the generalized Breit interaction (GBI) in the EIE process [3,4].

References

[1] Chantrenne S et al 1992 Phys. Rev. Lett. 69 265

[2] Robbins D L et al 2006 Phys. Rev. A 74 022713

[3] Gumberidze A et al 2013 Phys. Rev. Lett. 110 213201

[4] Gumberidze A et al 2019 Phys. Rev. A 99 032706

^{*} E-mail: a.gumberidze@gsi.de