Stereo-dynamical ion-pair formation in collisions of highly-charged ions with $\mathbf{A r}_{2}$

T Ohyama-Yamaguchi ${ }^{1 *}$ and A Ichimura ${ }^{2 \dagger}$
${ }^{1}$ Tokyo Metropolitan College of Industrial Technology, Shinagawa-ku, Tokyo 140-0011, Japan
${ }^{2}$ Tokyo University of Science, Shinjyuku-ku, Tokyo 162-8601, Japan

Abstract

Synopsis Multiple ionization process of a rare gas dimer collided with a slow highly charged ion is investigated with the three-center Coulombic over-barrier model previously developed by the present authors. To reveal stereodynamical effects, we calculate the cross sections for asymmetric ion-pair formation as a function of the orientation angle. We distinguish the near and far atomic sites, as well as the forward and backward ions, produced as a result of Coulomb explosion.

Multiple ionization process of a rare gas dimer BC collided with a slow highly charged ion A^{q+} is investigated with the three-center Coulombic over-barrier model previously developed by the present authors [1, 2]. To reveal stereodynamical effects, we calculate asymmetric ion-pair formation cross sections $\sigma\left(Q_{\mathrm{B}}, Q_{\mathrm{C}}\right)$ as a function of the orientation angle. In recent works, we have modified the model so as to introduce the effect of partial screening for "nonactive" target atomic site (either B or C) during a collision in respective steps of electron removal [1]. We have also calculated the ion-pair formation cross sections by considering both projectile and target screening [2].

The present work is stimulated by the investigation at GANIL, where the azimuthal angle dependence is observed around the beam axis as an orientation effect [3, 4]. On the other hand, in the present work, we investigate the polar angle θ dependence. We assume that $\mathrm{B}^{Q_{\mathrm{B}}+}$ ion is emitted in forward directions with $\mathrm{C}^{Q_{\mathrm{C}}+}$ ion in backward directions, i.e., $\left(\theta_{\mathrm{B}}, \varphi_{\mathrm{B}}\right)=(\theta, \varphi)$ and $\left(\theta_{\mathrm{C}}, \varphi_{\mathrm{C}}\right)=(\pi-\theta, \pi+\varphi)$ with $\cos \theta \geq 0$ and $0 \leq \varphi \leq 2 \pi$, where $\cos \theta \equiv \hat{\boldsymbol{d}} \cdot \hat{\boldsymbol{v}}$ defined by the beam vector \boldsymbol{v} and the dimer axis vector \boldsymbol{d}.

Figure 1 indicates the cross-section ratio $r_{31 / 22} \equiv\left(\sigma_{31}+\sigma_{13}\right) / \sigma_{22}$ in the region of $0 \leqq$ $\cos \theta \leqq 1$. When $\theta=\pi / 2$, the incident ion collides perpendicularly with the target. At this angle, the ration $r_{31 / 22}$ is almost $3 \sim 7$ in the figure, which gives reasonable agreement with the experimental result [4]. On the other hand, the
ratio shows peculiar behavior in the forward directions as $\cos \theta \simeq 1$. Asymmetric cross-sections σ_{31} and σ_{13} are never populated in pararell incidence $(\theta=0)$. Note that we only consider the way-in process in the present model. To get physical insites more clearly, we make the logarithmic plot by taking an appropriate variable $n \equiv \log _{2}(1-\cos \theta)^{-1}$ as the horizontal axis.

Figure 1. Orientation dependence of cross-section rario, $\left(\sigma_{31}+\sigma_{13}\right) / \sigma_{22}$.

References

[1] T. Ohyama-Yamaguchi and A. Ichimura 2011 Physica Scripta 144014028.
[2] T. Ohyama-Yamaguchi and A. Ichimura 2017 J. Phys. Conf. Ser. 875102031.
[3] Matsumoto et al. 2010 J. Phys. Rev. Lett. 105263202.
[4] Iskandar et al. 2018 Phys. Rev. Lett. 98 012701.

[^0]
[^0]: *E-mail: yamaguti@metro-cit.ac.jp
 ${ }^{\dagger}$ E-mail: ichimura_atsushi@nifty.com

