Radiative Double Electron Capture for 2.11 MeV/u $F^{9+,8+} + N_2$, Ne

D. S. La Mantia^{*}, P. N. S. Kumara, S. L. Buglione, C. P. McCoy, C. J. Taylor, J. S. White, A. Kayani, J. A. Tanis

Department of Physics, Western Michigan University, Kalamazoo, MI 49008 USA

Synopsis The first successful observation of radiative double electron capture for gas targets is reported. RDEC was observed for 2.11 MeV/u $F^{9+,8+}+N_2$, Ne collisions. Cross sections for both projectile charge states and targets were determined and compared with previous results for thin-foil carbon targets and with theory.

Radiative double electron capture is a fundamental atomic process where two electrons are captured from a target to bound states in a projectile simultaneous with emission of a single photon [1]. RDEC can be considered the inverse of double photoionization for ion-atom collision systems, a process that has been observed only for two-electron helium atoms and not for twoelectron ions. RDEC is related to the well-known process of radiative electron capture [2], in which a single electron is captured to a bound state with the simultaneous emission of a photon. Cross sections for RDEC for 2.11 MeV/u $F^{9+,8+}+N_2$, Ne have been determined [3].

This work was performed using the tandem Van de Graaff accelerator facility at Western Michigan University (WMU). A beam of F^{9+} or F^{8+} ions was directed toward a differentiallypumped gas cell with target pressures set to the single-collision regime (8 mTorr for N_2 and 15 mTorr for Ne). A Si(Li) x-ray detector mounted at 90° to the beamline collected photons and separate silicon surface-barrier detectors collected the charge-changed projectiles. Analog-to-digital converters for the x rays and time-to-amplitude converters (TACs) for the coincidences, as well as an event-mode data acquisition system, were employed to assign the measured x rays to the corresponding single (Q-1) or double (Q-2) chargechanged particles, or vice versa. Typical spectra obtained are shown in Fig. 1.

The first successful observations of RDEC were performed at WMU using 2.38 MeV/u O^{8+} [4] and 2.11 MeV/u F^{9+} [5] projectiles incident on thin carbon foils. Unavoidable multiplecollision effects were present in these measurements causing RDEC events to be observed in both the Q-2 and Q-1 channels. These previous measurements thus provide the motivation for the present single-collision gas target work. Also, contaminants are avoided with high-purity gases. As seen, approximately 70 RDEC counts for $F^{9+} + N_2$ were obtained in nearly three weeks of round-the-clock beamtime.

Figure 1. Spectra for 2.11 MeV/u $F^{9+}+N_2$: (a) Q-2 TAC spectrum associated with RDEC energy photons, (b) x-ray spectrum associated with Q-2 particles, (c) Q-2 and (d) Q-1 TAC spectra associated with REC energy photons.

This work was supported in part by National Science Foundation Grant PHY-1707467.

References

- Miraglia J and Gravielle M. S. 1987 *ICPEAC XV:* Book of Abstracts p. 517 Brighton, U.K.
- [2] Stöhlker T et al. 1995 Phys. Rev. A 51 2098
- [3] La Mantia D *et al.* 2019 Submitted to *Phys. Rev.* Lett.
- [4] Simon A et al. 2010 Phys. Rev. Lett. 104 123001
- [5] Elkafrawy T et al. 2016 Phys. Rev. A 94 042705

^{*}E-mail: david.s.lamantia@wmich.edu